New method of Friction Stir Welding (FSW) is by the effective method of receipt of high-quality connections of constructions of different geometry. In the article advantages of the method and influence of basic parameters of process on quality of the weld-fabricated guy-sutures are shown, examples of the executed works are made.
Сварка трением перемешиванием (СТП) является относительно новым методом получения неразъемных соединений материалов (запатентована The Welding Institute in UK (TWI), (Великобритания)) в 1991 году [1]. На этот способ сварки имеется более раннее отечественное авторское свидетельство СССР [2].
Выполненные в последние годы исследования показали, что СТП является эффективным способом получения высококачественных соединений конструкций различной геометрии, включая листовые материалы, пространственные профильные конструкции, трубы, восстановления изношенных деталей, модифицирования и улучшения структуры материалов, залечивания трещин и литейных дефектов. Обладая широкими технологическими возможностями по получению неразъемных соединений деталей узлов, она может быть использована в качестве альтернативы заклепочным соединениям, контактной, шовной электродуговой, электроннолучевой и лазерной сваркам, сваривания разнородных материалов. Таким образом, СТП становится универсальной технологией, имеющей большие перспективы в различных отраслях производства [3]. По мнению ведущих мировых экспертов, данный процесс является революционным в области сварки листовых материалов из легких сплавов (алюминиевых и магниевых). Эту технологию считают ключевой для создания авиационной техники пятого поколения. Толщины свариваемых СТП листовых материалов достигли для алюминиевых сплавов 110 мм, а для сталей и никелевых сплавов 45 мм.
Необходимо отметить следующие ключевые преимущества СТП
- Металлургические и производственные:
- сварка в твердой фазе;
- низкие деформации свариваемых изделий;
- высокая размерная стабильность и повторяемость процесса;
- отсутствует «выгорание» легирующих элементов;
- высокие прочностные свойства сварного шва;
- мелкозернистая рекристаллизованная структура сварного шва;
- отсутствие усадочных трещин;
- высокая скорость сварки;
- не требуется дополнительная термическая обработка шва;
- широкая номенклатура свариваемых материалов.
- Экологические:
- не требуются защитные газовые среды;
- минимальные требования к очистке свариваемых поверхностей;
- не требуется флюсов;
- отсутствует выделение вредных веществ.
- Энергетические и экономические:
- низкое потребление энергии (2,5% от энергии, потребляемой при лазерной сварке, 10% от энергии, потребляемой при дуговой сварке);
- снижение веса конструкций;
- не требуется присадочных материалов;
- быстрая окупаемость, обусловленная низким потреблением энергии и отсутствием расходных материалов;
- уменьшение производственного цикла на 50...75% по сравнению с обычными способами сварки, например, дуговой;
- не требуется специальной разделки кромок под сварку и обработки шва после нее.
СТП получает широкое применение во многих отраслях производства. В авиаракетостроении для сварки ответственных конструкций фюзеляжа, баков, панелей различного назначения (NASA, Lockheed-Martin Corp., Boeing, Airbus Integrated Company, Wisconsin Center for Space Automation & Robotics, Oak Ridge National Laboratory, MTS Systems, ГКНПЦ им. M. В. Хруничева и др.). В судостроении СТП используется для сварки корпусов маломерных судов, например, военный катер Littoral Combat Ship сваривается по технологии фирмы Friction Stir Link, Inc.. СТП является базовой технологией фирмы Hitachi Rail Systems в производстве железнодорожных вагонов A-train и японского высокоскоростного поезда (Shinkansen). Имеется опыт сварки трубопроводов. Специализированное оборудование для СТП выпускается фирмами MTS Systems Corporation, Nova-tech engineering inc.. Friction Stir Link, Inc. (США), Danish Stir Welding Technology (DanStir) (Дания), ESAB (Швеция), Osaka East Urban Area, Osaka Cast и Hitachi (Япония), TWI (Англия) и др.
Работы по СТП выполняются и курируются The Welding Institute in UK (TWI) (Великобритания), NASA, Lockheed-Martin Corp., Boeing, Wisconsin Center for Space Automation & Robotics, Oak Ridge National Laboratory MTS Systems Corporation, Thompson Friction Welding (США), Imhof Hartchrom GmbH и Klaus Raiser GmbH (Германия), Hidetoshi Fujii и исследовательским центром JWPI при Osaka University (Япония), Shanghai puda friction welder со., ltd. (Китай) и другими корпорациями и компаниями.
Расширяющееся применение сварки трением обусловлено высоким качеством получаемых сварных соединений. Перемешивание металла в твердой фазе в условиях «теплой» деформации иногда создает микроструктуры более прочные, чем основной материал. Обычно прочность на растяжение и усталостная прочность сварного шва составляет 90% от характеристик основного материала на уровне, обеспечиваемом применением дорогостоящих электронно-лучевой, диффузионной и лазерной сварок. Сварка трением может выполняться в различных позициях (вертикальной, горизонтальной, под наклоном, снизу вверх и т.д.), поскольку силы гравитации в данном случае не играют роли. Обеспечивается возможность сваривания разнородных материалов, термопластичных пластиков и композиционных материалов. При выполнении сварочных операций не требуется предварительной очистки рабочих поверхностей, отсутствует разбрызгивание расплавленного металла, нет необходимости в присадочных материалах. Немаловажен тот факт, что при наличии специальной оснастки и инструмента сварка трением может выполняться на обычном металлорежущем оборудовании универсальных фрезерных станках и станках с ЧПУ, а также с использованием робототехнических систем. При прочих равных условиях, по сравнению с традиционными процессами дуговой и контактной сварки, СТП имеет энергопотребление в 2...5 раз меньшее. Эти факторы обуславливают то, что применение СТП ежегодно возрастает на 15...20%.
В настоящее время в российских организациях накоплен опыт перемешивающей сварки трением различных алюминиевых сплавов. Такие исследования в лабораторных условиях выполнялись в ФГУП ЦНИИ КМ «Прометей», ФГУП «ВИ-АМ», МГТУ им. Н.Э. Баумана, ГКНПЦ имени М. В. Хруничева. ФГУП «НПО Техномаш», ОАО «ВНИИАЛМАЗ», ЗАО «Сеспель» и др. Они подтвердили высокую эффективность СТП. На данном этапе главной задачей является создание и организация производства универсализированного и специального оборудования и инструмента. К сожалению, в нашей стране промышленное оборудование для СТП не производится.
Сварка трением перемешиванием является процессом соединения материалов в твердом состоянии, при котором специальный вращающийся инструмент, конструктивно состоящий из плоского или профилированного основания (бурта) и расположенного на нем наконечника с различным профилем (пина), перемещается вдоль поверхностей стыка свариваемых деталей (рис.1). Трение бурта и пина в контакте со свариваемым материалом вызывает тепловыделение, за счет которого происходит размягчение материала. Процесс трения при СТП сопровождается пластической деформации тонких приконтактных слоев, в которых реализуется внутреннее трение. Основными функциями пина являются перемешивание и перенос материала путем его экструзии между поверхностью инструмента и не размягченным материалом, а бурта – создание избыточного давления в зоне сварки. Давление бурта инструмента в зоне стыка вызывает пластическую деформацию и течение пластифицированного металла, перемешиваемого профилированным наконечником. Таким образом, соединение осуществляется в условиях экструзии с проковкой материала при высоких скоростях относительной деформации.
Силы трения и напряженное состояние деформируемого объема материала зависят от закономерностей изменения физико-механических свойств свариваемых материалов в процессе СТП, обусловленных такими факторами как температура, степень и скорость деформации, геометрия инструмента и технологические режимы.
Основными параметрами процесса СТП являются
1. Сила, действующая на инструмент в процессе сварки
Ее принято раскладывать на составляющие (рис.1) в декартовой системе координат:
Fx | — | сила, действующая в направлении сварки (вдоль шва); |
Fy | — | сила, действующая перпендикулярно направлению сварки в плоскости параллельной или касательной (при сварке криволинейных поверхностей) поверхностям стыкуемых элементов (плоскость сварки); |
Fz | — | сила, действующая в направлении перпендикулярном плоскости сварки. |
Очевидно, что величины действующих сил зависят от материалов свариваемых заготовок, температур в зоне сварки, скорости сварки, геометрии сварочного инструмента и его ориентации (наклона) относительно плоскости сварки. При прочих равных условиях значения силы растут с уменьшением температуры и увеличением скорости сварки. Высокие значения сил могут привести к разрушению инструмента.
2. Скорость сварки, Vсв
Определяется скоростью перемещения инструмента в направлении сварки. Малые скорости сварки могут привести к перегреву материала, изменению условий термомеханического воздействия, увеличению зоны термического влияния и, как следствие, снижению прочностных характеристик сварного соединения.
3. Частота вращения инструмента
Вращение инструмента обеспечивает нагрев материала тепловыделением при трении и его перенос в процессе движения инструмента вдоль шва от фронтальной к тыловой части зоны сварки. Увеличение частоты вращения инструмента повышает тепловыделение, интенсифицирует перенос материала и его перемешивание. Если материал недостаточно прогрет, то за пином могут образовываться свободные пространства, приводящие к несплошности шва, кроме того, на инструмент действуют большие силы, способные привести к его разрушению. С другой стороны, увеличение температуры выше определенного предела приводит к дефектам, обусловленным перегревом материала (рис. 2).
4. Угол наклона инструмента, α
Для улучшения условий формирования сварного соединения инструмент может быть наклонен относительно перпендикуляра к плоскости сварки. Обычно такой наклон производится на угол 1,5…4,5° в направлении сварки с обеспечением более низкого положения края бурта за ее зоной. Наклон инструмента способствует улучшению условий проковки шва буртом. Если угол наклона слишком мал, то это может привести к образованию дефектов в виде непроваров на наружной поверхности шва, а если угол наклона слишком велик, – возможно нарушение сплошности шва у корня с образованием тоннельного дефекта.
5. Глубина погружения бурта инструмента
Определяется как расстояние от поверхности заготовки до нижнего положения торца бурта. Практически важными являются глубина заглубления бурта и положение конца пина в корне сварного шва. Глубина погружения должна обеспечивать условия проковки шва на всю толщину свариваемого материала и исключение образования дефектов. Недостаточное заглубление бурта инструмента в свариваемый материал приводит к увеличению объема, который должен заполняться пластифицированным металлом при формировании шва, и, как следствие, к снижению избыточного давления и образованию несплошностей в швах. Кроме того, выделяется количество тепла, недостаточное для обеспечения требуемого уровня пластификации, необходимого для качественного формирования шва и на лицевой поверхности шва образуются дефекты в виде непровара.
6. Геометрия инструмента
Качество сварки трением перемешиванием и ее производительность во многом определяется геометрией сварочного инструмента. Параметры геометрии инструмента, состоящего из пина и бурта, должны не только обеспечивать качество сварного соединения, создавая требуемые условия термопластической деформации и массопереноса, но и его стойкость, прочность, минимальную силу внедрения инструмента при его введении в свариваемый стык. Материал инструмента должен иметь высокую жаростойкость, твердость и жаропрочность, сопротивление изнашиванию, низкую теплопроводность. В особой мере это относится к материалам инструмента, предназначенного для сваривания сталей, титановых и никелевых сплавов и др. Для повышения качественных характеристик инструмента иногда используют технологии поверхностного упрочнения и нанесения покрытий. На поверхностях пина и бурта выполняют специальные профильные нарезки, обеспечивающие управление течением пластифицированного материала. Форма бурта может быть плоской, вогнутой или конической. Для СТП могут применяться сварочные инструменты с вращающимся буртом, со стационарным буртом, катушечные (рис.3), с конусным пином, с изменяемой длиной пина, без пина.
Некоторые характерные конструкции сварочных инструментов приведены на рис.4.
При перемешивающей сварке трением сварочный инструмент испытывает интенсивное тепловое и силовое воздействие, которые лимитируют его срок службы, изменение формы рабочей части инструмента приводит к нарушению стабильности сварочного процесса. Следует отметить также, что попадание частиц износа инструмента в свариваемый материал может неблагоприятно сказываться на качестве сварного соединения.
Для сварки используют инструменты из материалов, приведенных в табл.1.
Свариваемый материал | Толщина, мм | Материал инструмента |
---|---|---|
Алюминиевые сплавы | <12 | Инструментальные стали, твердые сплавы системы WC-Co |
>12 | Сплавы на кобальто-никелевой основах (MP 159)* | |
Медь и медные сплавы | <50 | Никелевые сплавы, кубический нитрид бора (КНБ), вольфрамовые сплавы |
Титановые сплавы | <6 | Вольфрамовые, фольфрам-рениевые сплавы |
Нержавеющие стали | <6 | КНБ, вольфрамовые сплавы |
Низкоуглеродистые стали | <12 | Твердые сплавы системы WC-Co, КНБ |
Никелевые сплавы | <6 | КНБ |
* MP 159 многофазный сплав, имеющий уникальную комбинацию прочности (1600 МПа), вязкости (* = 12%), жаропрочности и жаростойкости. Сплав получают вакуумной индукционной плавкой с контролем процесса отверждения. Сохраняет высокую прочность до температуры 650 С. Состав MP 159: Al – 0,20%; Cr – 19,0%; Co – 35,7%; Fe – 9,0%; Mo – 7,0; Ni – 25,5%; Nb, Cb – 0,60%; Ti – 3,0%. |
7. Предварительный нагрев или охлаждение
Предварительный нагрев зоны сварки целесообразно выполнять для материалов с относительно высокими температурами плавления, такими как стали, титановые сплавы и проч. с целью снижения действующих сил и повышения стойкости инструмента, ускорения процесса разогрева и увеличения скорости сварки. Обычно для этих целей используют индукционный нагрев.
Охлаждение зоны сварки выполняют для алюминиевых и магниевых сплавов, в первую очередь, для уменьшения роста зерна. Охлаждение выполняют потоком воздуха. Кроме того, СТП может выполняться в воде.
На рис.5,6 приведены характерные циклограммы СТП.
В большинстве случаев в зоне сварного шва могут быть выделены четыре различных зоны (рис.7): зона перемешивания, зона термодеформационного воздействия, зона термического влияния и базовый материал.
Зона перемешивания имеет мелкие равноосные зерна. Такая структура образуется в результате рекристаллизации при действии интенсивных пластических деформаций и высоких температур. Макроструктура зоны перемешивания иногда имеет так называемую «луковичную» форму (рис.8), представляющую собой характерные кольца. Механизм образования подобной структуры связан с экструзией материала в узком пространстве между инструментом и неразмягченным тепловыделением материалом. Многие исследователи считают, что «луковичная» структура является признаком высокого качества сварного соединения [4].
Зоны термомеханического влияния находятся по обе стороны зоны перемешивания. Пластическая деформация и температура в этих зонах ниже, чем в зоне перемешивания. Следствием этого является образование структуры, имеющей участки мелких и сравнительно крупных зерен, поскольку эта зона рекристаллизована только частично.
В зонах термического влияния зерна имеют большие размеры, поскольку их материал подвергается только воздействию повышенных температур при отсутствии пластических деформаций, что сопровождается ростом зерна, материал в этой зоне имеет наиболее низкие прочностные свойства.
Применением СТП можно получать различные виды сварных соединений (рис.9).
Следует отметить, ЧТО СТП может выполняться с присадочным материалом, с дополнительным нагревом, с применением инертных и легирующих сред, с механической и упрочняющей обработкой сварного шва.
На основе СТП разработаны технологии различного назначения: шовная сварка, точечная сварка, наплавка, устранение дефектов материала и его модифицирование, формирование внутренних каналов, пайка, наращивание материала (аддитивная технология) и др.
На рис.10…17 приведены примеры сварки, выполненные на ОАО «ВНИИАЛМАЗ», и фото установки для СТП.
Литература
- W. M. Thomas et al., 1991. US Patent No. 5,460,31 7.
- А. С. СССР 1195846, Кл. МПК В 23 К.
- Влияние параметров процесса сварки трением с перемешиванием на формирование швов соединений алюминиевых сплавов толщиной 1,8…2,5 мм / Покляцкий А. Г., Ищенко А. Я., Подъельников С. В. // Автоматическая сварка. – 2008. – № 10. – С. 27-30.
- By Rajiv S. Mishra, Murray W. Mahoney: Friction stir welding and processing, ASM International. ISBN 978-0-87170-848-9. 352 р.
- Krishnan, K. N. “On the Formation of Onion Rings in Friction Stir Welds.” Materials Science and Engineering A 327, no.2 (April 30, 2002): 246-25 1. doi:10. 1016/S0921-5093 (01)01474-5.
- 4421 просмотр
Комментарии
Добавить комментарий