Вы здесь

Методы проецирования

 Введение

Все разделы начертательной геометрии пользуются одним методом – методом проецирования, поэтому чертежи, применяемые не только в начертательной геометрии, называются проекционные чертежи.

Метод проецирования заключается в том, что любая из точек множества точек пространства может быть спроецирована с помощью проецирующих лучей на любую поверхность. Для этого представим некоторую заданную поверхность (рис.1) и точку А в пространстве. При проведении луча S через точку А в направлении поверхности последний пересечет ее в точке А1. Точку А называют проецируемой точкой. Плоскость α, на которой получают проекцию, называют плоскость проекций. Точка пересечения луча с плоскостью называется проекцией точки А. Прямая АА1 (луч), называется проецирующим лучом.

Проецирование точки
Рис.1. Проецирование точки

 Центральное проецирование

Центральный (конический или полярный) метод проецирования основан на том, что при проецировании на плоскость ряда точек (А, B, C и т.д.) все проецирующие лучи проходят через одну точку, называемую центром проецирования, или полюсом.

Представим в пространстве треугольник АВС и проецирующие лучи, проходящие через данный полюс S и через точки АВС треугольника, проведенные до пересечения с плоскостью α. Треугольник А1B1C1 будет центральной проекцией треугольника АВС (рис.2).

Метод центрального проецирования не удовлетворяет целому ряду условий, необходимых для технического чертежа, а именно: не дает однотипности изображения, полной ясности всех геометрических форм, не обладает удобоизмеримостью, не имеет простоты изображения.

Центральное проецирование
Рис.2. Центральное проецирование

 Параллельное проецирование

Метод параллельного (косоугольного) проецирования заключается в том, что все проецирующие лучи, проходящие через точки треугольника АВС, будут параллельны между собой (рис.3). Этот метод вытекает из метода центрального проецирования, при этом полюс должен быть удален на бесконечно большое расстояние от плоскости, на которую проецируется предмет.

Параллельное проецирование
Рис.3. Параллельное проецирование

 Ортогональное проецирование

Ортогональный (прямоугольный) метод проецирования – метод, когда проецирующие лучи параллельны между собой и перпендикулярны к плоскости проекций (рис.4). Данный метод – частный случай параллельного проецирования.

Ортогональное проецирование
Рис.4. Ортогональное проецирование

Таким образом, любая точка пространства может быть спроецирована на плоскости проекций: на горизонтальную П1, фронтальную П2 и профильную П3. Горизонтальная проекция точки обозначается А1 или А′, фронтальная А2 или А″, профильная А3 или А′″ (рис.5).

Ортогональное проецирование точки
Рис.5. Ортогональное проецирование точки

 ЛИТЕРАТУРА

  • Черчение / Н.С. Брилинг. – М.: Стройиздат, 1989. – 420 с.
  • Краткий справочник по начертательной геометрии и машиностроительному черчению / Н.П. Сберегаев, М.А. Герб. М. – Л., Машиностроение, 1965, 264 с.

Комментарии

Аватар пользователя Коля
Коля
27/05/2019 - 21:34
Да ладно, шучу, я люблю проецировать вечерами :)

Добавить комментарий