Металлические сплавы с нанокристаллической структурой значительно жёстче и прочнее нормальных металлов с зёрнами микронных размеров, что теоретически делает первые идеальными конструкционными материалами. Но древо теории здесь существенно портится прививками практики: нанокристаллические структуры ещё и значительно более подвержены воздействию высоких температур, которые разрушают нанокристаллы и приводят к образованию зёрен куда бóльших размеров, что уменьшает прочность сплавов.
Проблема не уникальна, ведь и привычные металлы при весьма умеренном нагреве драматически теряют прочность. Если, например, обычное бревно или деревянный элемент каркаса нагреть до 600 ˚С без свободного доступа кислорода (то есть внутри стены), то, как показывает опыт, его прочность не будет меняться очень долгое время. А вот металл... Ну что тут говорить: башни-близнецы потому и упали, что их каркас (стальные металлоконструкции) потерял прочность при не слишком высоких температурах. Дело в том, что задолго до начала плавления микроструктура металла при нагреве начинает меняться. Однородные зёрна увеличиваются в размерах, и прочность конструкции резко падает.
Что же делать? Применять те металлы, которым это в силу особенностей их строения свойственно меньше всего. Исследователи из Массачусетского технологического института (США) под руководством Кристофера Шуха попробовали подобрать сплавы с такими компонентами, которые не давали бы границам нанокристаллов, размером около 20 нм каждый, нарушаться при нагреве до значимых температур.
Учёные испытали ряд сплавов, включая вольфрам-титановый, который оказался наиболее устойчив к высоким температурам: недельное пребывание под нагревом до 1 100 ˚C никак не повлияло ни на размер нанокристаллов в его структуре, ни на прочность. Это рекордный результат: до сих пор металлические сплавы, как и чистые металлы с нанокристаллической структурой, не теряющие прочность при таком нагреве, не встречались.
Кстати, такой материал нельзя было обнаружить путём обычного метода проб и ошибок, столь, увы, распространённого в металлургии. Опробованный исследователями подход, основанный на расчёте энергетических состояний в атомах различных сплавов, в этом отношении предоставляет уникальную возможность создания других сплавов, с более дешёвыми компонентами, но также способных к сохранению полной прочности при нагреве.
Разработанный материал может найти применение в машиностроении или при создании новых видов сверхпрочной металлической брони.
- 589 просмотров
Добавить комментарий