Вы здесь

Химические свойства олова

 Химические свойства олова

Превращение белого олова в серое – явление, которое называют оловянной чумой. Обычно медленно идущее превращение ускоряется при соприкосновении с уже превращенным металлом, при этом резко изменяются свойства олова, оно превращается в порошок.

Чем чище олово и чем большей деформации оно подверглось перед хранением, тем быстрее при низких температурах происходит превращение белого олова в серое. Высокая скорость превращения наблюдается в присутствии примесей Те, Мn, Со, Zn, А1, Ga и As, в меньшей мере Fe и Au; сильно уменьшают скорость превращения Pb, Cd, Sb и Ag, в меньшей мере Ni и Сu; добавка 0,5 % Bi полностью предотвращает оловянную чуму.

Серое олово обладает полупроводниковыми свойствами.

Прочная тонкая поверхностная пленка окислов делает олово устойчивым но отношению к воздуху и воде. Медленное окисление олова на воздухе с образованием SnO и SnO2 наблюдается лишь выше 150 °С. Бидистиллят совершенно не растворяет олово. При высокой температуре олово легко и полностью сгорает, образуя двуокись олова.

С хлором и бромом олово взаимодействует при обычной температуре, с иодом – при слабом нагревании. Реакция с фтором протекает при обычной температуре чрезвычайно медленно, при 100 °С идет очень бурно – с появлением пламени. При нагревании олово энергично реагирует с серой, селеном и теллуром, взаимодействует с фосфором, а с азотом, углеродом, кремнием и водородом непосредственно не взаимодействует, однако косвенным путем можно получить гидриды, нитриды и имиды олова.

Близость нормального потенциала олова и водорода, а также высокое перенапряжение водорода на олове объясняют малую скорость взаимодействия этого металла с разбавленными кислотами (особенно в отсутствие кислорода). В присутствии кислорода скорость растворения существенно возрастает. Устойчиво олово также в атмосфере газообразного сероводорода, насыщенного влагой, и в его насыщенном водном растворе.

Концентрированная соляная кислота легко (особенно при нагревании) растворяет олово с образованием SnCl2 и водорода. Интересно отметить, что реакция β-олова с 37 %-ной НCl при – 17 °С идет с образованием SnCl2 и водорода. В этих условиях α-олово образует SnCl4.

Скорость бесстружкового растворения олова в 5,54N НСl при 17 °С лимитируется скоростью анодно-катодного процесса, в то время как скорость растворения таких металлов, как магний и цинк, значительно больше и лимитируется скоростью диффузии растворителя к поверхности металла.

Сильно разбавленная холодная азотная кислота медленно растворяет олово и образует Sn(NO3)2. При этом не происходит выделения водорода, а идет восстановление азотной кислоты. Концентрированная азотная кислота энергично взаимодействует с оловом и образует нерастворимую β-оловянную кислоту. С концентрированной серной кислотой олово взаимодействует гораздо медленнее.

Олово очень хорошо растворяется в царской водке. Реакция протекает по уравнению

  3Sn + 4HNO3 + 12НСl = 3SnCl4 + 4NO + 8H2O.  

Растворы (1%-ные) уксусной и молочной кислот взаимодействуют с оловом примерно с такой же скоростью, как серная кислота, и приблизительно в 3 раза медленнее, чем соляная кислота.

0,1N раствор лимонной кислоты при 25 °С растворяет олово почти с такой же скоростью, как соляная кислота при тех же условиях. Олово реагирует со стеариновой и олеиновой кислотами при высоких температурах. Наиболее агрессивной из изученных органических кислот по отношению к олову оказалась щавелевая.

Щелочи медленно растворяют олово даже на холоду и при низких концентрациях. Скорость растворения значительно повышается в присутствии воздуха. При этом в растворе образуются гидроксостаннат-ионы [Sn(OH)2]2-. Растворимость олова в щелочах используют для снятия его со старых консервных банок, после чего металл выделяют из раствора электролитически. Для переведения олова в раствор применяют метод анодного растворения олова в концентрированном растворе NaOH. При этом, однако, возможно пассивирование олова, если плотность тока превышает определенную величину.

Негидролизующиеся соли соляной, серной и других кислот не разрушают окисную пленку на олове; в случае коррозионного процесса либо происходит утолщение окисной пленки и поверх¬ность олова тускнеет, либо появляются черные пятна и коррозия носит точечный характер. Соли, подвергающиеся гидролизу и имеющие в растворах кислую реакцию (FeCl3, АlСl3), в присутствии окислителей вызывают коррозию олова.

В таблице 1 представлена стойкость олова против некоторых реагентов.

Таблица 1 — Стойкость олова против некоторых реагентов
Действующая среда или вещество Характер воздействия на олово
Вода Не действует
Морская вода Очень устойчиво
Щелочногалоидные соли Частью слабо, частью умеренно действует
Галоиды (хлор, бром, фтор, иод) Весьма сильно действуют
Неорганические кислоты Сильно действуют
Уксусная кислота (до 60 %) На холоде слабо действует
Щавельная, лимонная, молочная, яблочная кислоты В присутствии воздуха слабо действует
Фенол Корродирует
Щелочи Сильно действуют
Сера Сильно действует
Кислород Устойчиво до 100 °С
Формальдегид Не действует

 ЛИТЕРАТУРА

  • Аналитическая химия олова / В.Б. Спиваковский. М.: Наука. 1975. – 250 с.
  • Справочник металлурга по цветным металлам. Т.1 / Под ред. Н.Н. Мурача. М.: Металлургиздат. 1953. – 1154 с.
  • Промышленные цветные металлы и сплавы / А.П. Смирягин, Н.А. Смирягина, А.В. Белова, М., Металлургия, 1974, 488 с.

Добавить комментарий