Вы здесь

Термическая обработка алюминиевых сплавов

 Введение

Для упрочнения алюминиевых сплавов применяют закалку и старение. Для устранения неравновесных структур и деформационных дефектов строения, снижающих пластичность сплава, применяют отжиг.

 Закалка алюминиевых сплавов

Закалка заключается в нагреве сплавов до температуры, при которой, избыточные интерметаллидные фазы полностью или большей частью растворяются в алюминии, выдержке при этой температуре и быстром охлаждении до комнатной температуры для получения пересыщенного твердого раствора. Например, температура закалки сплавов системы Аl–Сu (рис.1) определится линией abc, проходящей выше линии предельной растворимости для сплавов, содержащих меньше 5,7 % Сu, и ниже эвтектической линии (548 °С) для сплавов, содержащих большее количество Сu. При нагреве под закалку сплавов, содержащих до ~ 5 % Сu, избыточная фаза СuА12 полностью растворяется, и при последующем быстром охлаждении фиксируется только пересыщенный α-твердый раствор, содержащий столько меди, сколько ее находится в сплаве (рис.2в). При содержании более 5 % Си в структуре сплавов после закалки будет пересыщенный α-твердый раствор состава, отвечающего точке b, и нерастворенные при нагреве кристаллы соединения СuАl2. Время выдержки при температуре закалки, необходимое для растворения интермегаллидных фаз, зависит от структурного состояния сплава, типа печи и толщины изделия. Листы, плиты, прутки, полосы толщиной 0,5–150 мм выдерживают нагрев в селитровых ваннах 10–80 мин, а в наиболее широко применяемых для этой цели электропечах с принудительной циркуляцией воздуха – 30–210 мин. Выдержка фасонных отливок при температуре закалки более длительная (2–15 ч). За это время растворяются грубые выделения иитерметаллидных фаз (рис.2а). Охлаждение деформированных сплавов при закалке производят в холодной воде, а фасонных отливок – в подогретой воде (50–100 °С) во избежание их коробления и образования трещин. После закалки сплавы имеют сравнительно невысокую прочность σв, σ0,2 и высокую пластичность (delta;, ψ).

Диаграмма состояния Al–Cu
Рис.1. Диаграмма состояния Al–Cu
Микроструктура сплавов алюминия
Рис.2. Микроструктура сплавов алюминия:
а – литой сплав Al + 12 % Cu (α-раствор и кристаллы эвтектики α + CuAl2 и CuAl2); б – литой сплав Д16 (α-раствор и кристаллы CuAl2 и Al2MgCu); в – сплав Д16 после закалки (α-фаза); г – сплав Д16 после закалки и старения

 Старение закаленных сплавов

После закалки следует старение, при котором сплав выдерживают при нормальной температуре несколько суток (естественное старение) или в течение 10–24 ч при повышенной температуре (искусственное старение). В процессе старения происходит распад пересыщенного твердого раствора, что сопровождается упрочнением сплава. Распад пересыщенного твердого раствора происходит в несколько стадий в зависимости от температуры и продолжительности старения. При естественном (при 20 °С) или низкотемпературном искусственном старении (ниже 100–150 °С) не наблюдается распада твердого раствора с выделением избыточной фазы; при этих температурах атомы меди перемещаются только внутри кристаллической решетки α-твердого раствора на весьма малые расстояния и собираются по плоскостям (100) в двумерные пластинчатые образования (рис.3а) или диски – зоны Гинье-Престона (ГП–1). Эти зоны ГП–1 протяжностью в несколько десятков ангстрем (30–60 Å) и толщиной 5–10 Å более или менее равномерно распределены в пределах каждого кристалла. Концентрация меди в зонах ГП–1 меньше, чем в СuАl2 (54 %).

Схема выделения избыточных фаз из твердого раствора при старении
Рис.3. Схема выделения избыточных фаз из твердого раствора при старении:
а) – зоны ГП–1; б) – зоны ГП-2; в) – θ′-фаза; г) - θ-фаза (СuАl2)

Если сплав после естественного старения кратковременно (несколько секунд или минут) нагреть до 230–270 °С и затем быстро охладить, то упрочнение полностью снимается, и свойства сплава будут соответствовать свежезакаленному состоянию. Это явление получило название возврат. Разупрочнение при возврате связано с тем, что зоны ГП–1 при этих температурах оказываются нестабильными и поэтому растворяются в твердом растворе, а атомы меди вновь более или менее равномерно распределяются в пределах объема каждого кристалла твердого раствора, как и после закалки. При последующем вылеживаний сплава при комнатной температуре вновь происходит образование зон ГП–1 и упрочнение сплава. Однако после возврата и последующего старения ухудшаются коррозионные свойства сплава, что затрудняет использование возврата для практических целей. Длительная выдержка при 100 °С или несколько часов при 150 °С приводит к образованию зон ГП–2 большей величины (толщина 10–40 Å и диаметр 200–300 Å) с упорядоченной структурой, отличной от α-твердого раствора (рис.3б). Концентрация меди в них соответствует содержанию ее в СuАl2. С повышением температуры старения процессы диффузии, а следовательно, и процессы структурных превращений, и самоупрочнение протекают быстрее. Выдержка в течение нескольких часов при 150–200 °С приводит к образованию в местах, где располагались зоны ГП–2, дисперсных (тонкопластинчатых) частиц промежуточной θ′-фазы, не отличающейся по химическому составу от стабильной фазы θ (СuАl2), но имеющей отличную кристаллическую решетку; θ′-фаза когерентно связана с твердым раствором (рис.3в). Повышение температуры до 200–250 °С приводит к коагуляций метастабильной фазы и к образованию стабильной θ-фазы (рис.3г).

Таким образом, при естественном старении образуются лишь зоны ГП–1. При искусственном старении последовательность структурных Изменений можно представить в виде следующей схемы: ГП–1 → ГП–2 → θ′ → θ (СuAl2).

Это общая схема распада пересыщенного твердого раствора в сплавах Аl–Сu справедлива и для других сплавов. Различие сводится лишь к тому, что в разных сплавах неодинаков состав и строение зон, а также образующихся фаз.

Для стареющих алюминиевых сплавов разных составов существуют и свои температурно-временные области зонного (образование ГП–1 и ГП–2) и фазового (θ′- и θ-фаз) старения.

После зонного старения сплавы чаще имеют повышенный предел текучести и относительно невысокое отношение σ0,2/σв ≤ 0,6÷0,7, повышенную пластичность, хорошую коррозионную стойкость и низкую чувствительность к хрупкому разрушению.

После фазового старения отношение σ0,2/σв повышается до 0,9–0,95, а пластичность, вязкость, сопротивление хрупкому разрушению и коррозии под напряжением снижаются.

 Структурное упрочнение

Температура рекристаллизации некоторых сплавов алюминия с марганцем, хромом, никелем, цирконием, титаном и другими переходными металлами превышает обычно назначаемую температуру нагрева под деформацию или закалку, поэтому после закалки и старения таких сплавов в них сохраняется перекристаллизованная (полигонизованная) структура с высокой плотностью дислокаций, что повышает ее прочность по сравнению с рекристаллизованной структурой. Это явление получило название структурного упрочнения.

В результате структурного упрочнения значения σв, σ0,2 повышаются до 30–40 %. Наиболее сильно структурное упрочнение проявляется в прессованных полуфабрикатах (прутки, профили, трубы), поэтому это явление применительно к ним называют пресс-эффектом.

 Гомогенизационный отжиг

Этому виду отжига подвергают слитки перед обработкой давлением, для устранения дендритной ликвации, которая приводит к получению неоднородного твердого раствора и выделению по границам зерен и между ветвями дендритов хрупких неравновесных эв-тектических включений СuAl2, Al2CuMg (S-фаза), Mg2Si, Al3Mg2Zn2 (Т-фаза и др.). В процессе гомогенизации состав кристаллитов твердого раствора выравнивается, а интерметаллиды растворяются. В процессе последующего охлаждения интерметаллиды выделяются в виде равномерно распределенных мелких вторичных включений. Вследствие этого пластичность литого сплава повышается, что позволяет увеличить степень обжатия при горячей обработке давлением, скорость прессования и уменьшить технологические отходы. Гомогенизация способствует получению мелкозернистой структуры в отожженных листах и уменьшает склонность к коррозии под напряжением. Температура гомогенизации в пределах 450–520 °С, а выдержка от 4 до 40 ч. Охлаждение проводят на воздухе или вместе с печью.

 Рекристаллизационный отжиг

Такой отжиг заключается в нагреве деформированного сплава до температур выше температуры окончания первичной рекристаллизации; применяется для снятия наклепа и получения мелкого зерна. Температура рекристаллизованного отжига в зависимости от состава сплава колеблется от 350 до 500 °С, выдержка 0,5–2,0 ч. После рекристаллизационного отжига сплавов, не упрочняемых термической обработкой, скорость охлаждения выбирают произвольно. Для сплавов, упрочняемых термической обработкой скорость охлаждения до 200–250 °С должна быть ≤ 30 °С/ч. Отжиг в качестве промежуточной операции применяют при холодной деформации или между горячей и холодной деформациями.

 Отжиг для разупрочнения сплавов, прошедших закалку и старение

Этот вид отжиги проводят при 350–450 °С с выдержкой 1–2 ч. При этих температурах происходит полный распад пересыщенного твердого раствора и коагуляция упрочняющих фаз. Скорость охлаждения не должна превышать 30 °С/ч. После отжига сплав имеет низкий предел прочности, удовлетворительную пластичность и высокую сопротивляемость коррозии под напряжением.

 ЛИТЕРАТУРА

  • Материаловедение / Ю.М. Лахтин, В.П. Леонтьева. – М.: Машиностроение. 1980. – 493 с.

Добавить комментарий